

Welcome to aiohttp_auth_autz’s documentation!

This library provides authorization and authentication middleware plugins for
aiohttp servers.

These plugins are designed to be lightweight, simple, and extensible, allowing
the library to be reused regardless of the backend authentication mechanism.
This provides a familiar framework across projects.

There are three middleware plugins provided by the library. The auth_middleware
plugin provides a simple system for authenticating a users credentials, and
ensuring that the user is who they say they are.

The autz_middleware plugin provides a generic way of authorization using
different authorization policies. There is the ACL authorization policy as a
part of the plugin.

The acl_middleware plugin provides a simple access control list authorization
mechanism, where users are provided access to different view handlers depending
on what groups the user is a member of. It is recomended to use autz_middleware
with ACL policy instead of this middleware.

This is a fork of aiohttp_auth [https://github.com/gnarlychicken/aiohttp_auth]
library that fixes some bugs and security issues and also introduces a generic
authorization autz middleware with built in ACL authorization policy.

Install

Install aiohttp_auth_autz using pip:

$ pip install aiohttp_auth_autz

License

The library is licensed under a MIT license.

Contents:

	Getting Started

	Middleware plugins
	Authentication Middleware Usage

	Authorization Middleware Usage

	ACL Middleware Usage

	API Documentation
	Authentication Middleware API

	Authorization Middleware API

	ACL Middleware API

	Changelog
	0.2.2 (2017-04-18)

	0.2.1 (2017-02-16)

	0.2.0 (2017-02-14)

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

A simple example how to use authentication and authorization middleware
with an aiohttp application.

import asyncio

from os import urandom

import aiohttp_auth

from aiohttp import web
from aiohttp_auth import auth, autz
from aiohttp_auth.auth import auth_required
from aiohttp_auth.autz import autz_required
from aiohttp_auth.autz.policy import acl
from aiohttp_auth.permissions import Permission, Group

db = {
 'bob': {
 'password': 'bob_password',
 'groups': ['guest', 'staff']
 },
 'alice': {
 'password': 'alice_password',
 'groups': ['guest']
 }
}

global ACL context
context = [(Permission.Allow, 'guest', {'view', }),
 (Permission.Deny, 'guest', {'edit', }),
 (Permission.Allow, 'staff', {'view', 'edit', 'admin_view'}),
 (Permission.Allow, Group.Everyone, {'view_home', })]

create an ACL authorization policy class
class ACLAutzPolicy(acl.AbstractACLAutzPolicy):
 """The concrete ACL authorization policy."""

 def __init__(self, db, context=None):
 # do not forget to call parent __init__
 super().__init__(context)

 self.db = db

 async def acl_groups(self, user_identity):
 """Return acl groups for given user identity.

 This method should return a sequence of groups for given user_identity.

 Args:
 user_identity: User identity returned by auth.get_auth.

 Returns:
 Sequence of acl groups for the user identity.
 """
 # implement application specific logic here
 user = self.db.get(user_identity, None)
 if user is None:
 # return empty tuple in order to give a chance
 # to Group.Everyone
 return tuple()

 return user['groups']

async def login(request):
 # http://127.0.0.1:8080/login?username=bob&password=bob_password
 user_identity = request.GET.get('username', None)
 password = request.GET.get('password', None)
 if user_identity in db and password == db[user_identity]['password']:
 # remember user identity
 await auth.remember(request, user_identity)
 return web.Response(text='Ok')

 raise web.HTTPUnauthorized()

only authenticated users can logout
if user is not authenticated auth_required decorator
will raise a web.HTTPUnauthorized
@auth_required
async def logout(request):
 # forget user identity
 await auth.forget(request)
 return web.Response(text='Ok')

user should have a group with 'admin_view' permission allowed
if he does not autz_required will raise a web.HTTPForbidden
@autz_required('admin_view')
async def admin(request):
 return web.Response(text='Admin Page')

@autz_required('view_home')
async def home(request):
 text = 'Home page.'
 # check if current user is permitted with 'admin_view' permission
 if await autz.permit(request, 'admin_view'):
 text += ' Admin page: http://127.0.0.1:8080/admin'
 # get current user identity
 user_identity = await auth.get_auth(request)
 if user_identity is not None:
 # user is authenticated
 text += ' Logout: http://127.0.0.1:8080/logout'
 return web.Response(text=text)

decorators can work with class based views
class MyView(web.View):
 """Class based view."""

 @autz_required('view')
 async def get(self):
 # example of permit using
 if await autz.permit(self.request, 'view'):
 return web.Response(text='View Page')
 return web.Response(text='View is not permitted')

def init_app(loop):
 app = web.Application()

 # Create an auth ticket mechanism that expires after 1 minute (60
 # seconds), and has a randomly generated secret. Also includes the
 # optional inclusion of the users IP address in the hash
 auth_policy = auth.CookieTktAuthentication(urandom(32), 60,
 include_ip=True)

 # Create an ACL authorization policy
 autz_policy = ACLAutzPolicy(db, context)

 # setup middlewares in aiohttp fashion
 aiohttp_auth.setup(app, auth_policy, autz_policy)

 app.router.add_get('/', home)
 app.router.add_get('/login', login)
 app.router.add_get('/logout', logout)
 app.router.add_get('/admin', admin)
 app.router.add_route('*', '/view', MyView)

 return app

loop = asyncio.get_event_loop()
app = init_app(loop)

web.run_app(app, host='127.0.0.1', loop=loop)

Middleware plugins

This library provides authorization and authentication middleware plugins for
aiohttp servers.

These plugins are designed to be lightweight, simple, and extensible, allowing
the library to be reused regardless of the backend authentication mechanism.
This provides a familiar framework across projects.

There are three middleware plugins provided by the library. The auth_middleware
plugin provides a simple system for authenticating a users credentials, and
ensuring that the user is who they say they are.

The autz_middleware plugin provides a generic way of authorization using
different authorization policies. There is the ACL authorization policy as a
part of the plugin.

The acl_middleware plugin provides a simple access control list authorization
mechanism, where users are provided access to different view handlers depending
on what groups the user is a member of. It is recomended to use autz_middleware
with ACL policy instead of this middleware.

Authentication Middleware Usage

The auth_middleware plugin provides a simple abstraction for remembering and
retrieving the authentication details for a user across http requests.
Typically, an application would retrieve the login details for a user, and call
the remember function to store the details. These details can then be recalled
in future requests. A simplistic example of users stored in a python dict would
be:

from aiohttp_auth import auth
from aiohttp import web

Simplistic name/password map
db = {'user': 'password',
 'super_user': 'super_password'}

async def login_view(request):
 params = await request.post()
 user = params.get('username', None)
 if (user in db and
 params.get('password', None) == db[user]):

 # User is in our database, remember their login details
 await auth.remember(request, user)
 return web.Response(body='OK'.encode('utf-8'))

 raise web.HTTPUnauthorized()

User data can be verified in later requests by checking that their username is
valid explicity, or by using the auth_required decorator:

async def check_explicitly_view(request):
 user = await auth.get_auth(request)
 if user is None:
 # Show login page
 return web.Response(body='Not authenticated'.encode('utf-8'))

 return web.Response(body='OK'.encode('utf-8'))

@auth.auth_required
async def check_implicitly_view(request):
 # HTTPUnauthorized is raised by the decorator if user is not valid
 return web.Response(body='OK'.encode('utf-8'))

To end the session, the user data can be forgotten by using the forget
function:

@auth.auth_required
async def logout_view(request):
 await auth.forget(request)
 return web.Response(body='OK'.encode('utf-8'))

The actual mechanisms for storing the authentication credentials are passed as
a policy to the session manager middleware. New policies can be implemented
quite simply by overriding the AbstractAuthentication class. The aiohttp_auth
package currently provides two authentication policies, a cookie based policy
based loosely on mod_auth_tkt (Apache ticket module), and a second policy that
uses the aiohttp_session class to store authentication tickets.

The cookie based policy (CookieTktAuthentication) is a simple mechanism for
storing the username of the authenticated user in a cookie, along with a hash
value known only to the server. The cookie contains the maximum age allowed
before the ticket expires, and can also use the IP address (v4 or v6) of the
user to link the cookie to that address. The cookies data is not encrypted,
but only holds the username of the user and the cookies expiration time, along
with its security hash:

def init(loop):
 app = web.Application(loop=loop)

 # Create a auth ticket mechanism that expires after 1 minute (60
 # seconds), and has a randomly generated secret. Also includes the
 # optional inclusion of the users IP address in the hash
 policy = auth.CookieTktAuthentication(urandom(32), 60,
 include_ip=True)

 # setup middleware in aiohttp fashion
 auth.setup(app, policy)

 app.router.add_route('POST', '/login', login_view)
 app.router.add_route('GET', '/logout', logout_view)
 app.router.add_route('GET', '/test0', check_explicitly_view)
 app.router.add_route('GET', '/test1', check_implicitly_view)

 return app

The SessionTktAuthentication policy provides many of the same features, but
stores the same ticket credentials in a aiohttp_session object, allowing
different storage mechanisms such as Redis storage, and
EncryptedCookieStorage:

from aiohttp_session import get_session, session_middleware
from aiohttp_session.cookie_storage import EncryptedCookieStorage

def init(loop):
 app = web.Application(loop=loop)

 # setup session middleware in aiohttp fashion
 storage = EncryptedCookieStorage(urandom(32))
 aiohttp_session.setup(app, storage)

 # Create an auth ticket mechanism that expires after 1 minute (60
 # seconds), and has a randomly generated secret. Also includes the
 # optional inclusion of the users IP address in the hash
 policy = auth.SessionTktAuthentication(urandom(32), 60,
 include_ip=True)

 # setup aiohttp_auth.auth middleware in aiohttp fashion
 auth.setup(app, policy)

 ...

Authorization Middleware Usage

The autz middleware provides follow interface to use in applications:

	Using autz.permit coroutine.

	Using autz.autz_required decorator for aiohttp handlers.

The async def autz.permit(request, permission, context=None) coroutine checks
if permission is allowed for a given request with a given context.
The authorization checking is provided by authorization policy which is set by
setup function. The nature of permission and context is also determined by a policy.

The def autz_required(permission, context=None) decorator for aiohttp’s request
handlers checks if current user has requested permission with a given context.
If the user does not have the correct permission it raises web.HTTPForbidden.

Note that context can be optional if authorization policy provides a way
to specify global application context or if it does not require any. Also context
parameter can be used to override global context if it is provided by authorization policy.

To use an authorization policy with autz middleware a class of policy should be created
inherited from autz.abc.AbstractAutzPolicy. The only thing that should be implemented
is permit method (see Custom authorization policy for autz middleware).
The autz middleware has a built in ACL authorization policy
(see ACL authorization policy for autz middleware).

The recomended way to initialize this middleware is through
aiohttp_auth.autz.setup or aiohttp_auth.setup functions. As the autz
middleware can be used only with authentication aiohttp_auth.auth
middleware it is preferred to use aiohttp_auth.setup.

ACL authorization policy for autz middleware

The autz plugin has a built in ACL authorization policy in autz.policy.acl module.
This module introduces an AbstractACLAutzPolicy - the abstract base class to create an ACL
authorization policy class. The subclass should define how to retrieve user’s groups.

As the library does not know how to get groups for user and it is always
up to application, it provides abstract authorization ACL policy
class. Subclass should implement acl_groups method to use it with
autz_middleware.

Note that an ACL context can be specified globally while initializing
policy or locally through autz.permit function’s parameter. A local
context will always override a global one while checking permissions.
If there is no local context and global context is not set then the
permit method will raise a RuntimeError.

A context is a sequence of ACL tuples which consist of an
Allow/Deny action, a group, and a set of permissions for that ACL
group. For example:

context = [(Permission.Allow, 'view_group', {'view', }),
 (Permission.Allow, 'edit_group', {'view', 'edit'}),]

ACL tuple sequences are checked in order, with the first tuple that
matches the group the user is a member of, and includes the permission
passed to the function, to be the matching ACL group. If no ACL group is
found, the permit method returns False.

Groups and permissions need only be immutable objects, so can be strings,
numbers, enumerations, or other immutable objects.

Note

Groups that are returned by acl_groups (if they are not
None) will then be extended internally with Group.Everyone and
Group.AuthenticatedUser.

Usage example:

from aiohttp import web
from aiohttp_auth import autz
from aiohttp_auth.autz import autz_required
from aiohttp_auth.autz.policy import acl
from aiohttp_auth.permissions import Permission

create an acl authorization policy class
class ACLAutzPolicy(acl.AbstractACLAutzPolicy):
 """The concrete ACL authorization policy."""

 def __init__(self, users, context=None):
 # do not forget to call parent __init__
 super().__init__(context)

 # we will retrieve groups using some kind of users dict
 # here you can use db or cache or any other needed data
 self.users = users

 async def acl_groups(self, user_identity):
 """Return acl groups for given user identity.

 This method should return a sequence of groups for given user_identity.

 Args:
 user_identity: User identity returned by auth.get_auth.

 Returns:
 Sequence of acl groups (possibly empty) for the user identity or None.
 """
 # implement application specific logic here
 user = self.users.get(user_identity, None)
 if user is None:
 return None

 return user['groups']

def init(loop):
 app = web.Application(loop=loop)
 ...
 # here you need to initialize aiohttp_auth.auth middleware
 auth_policy = ...
 ...
 users = ...
 # Create application global context.
 # It can be overridden in autz.permit fucntion or in
 # autz_required decorator using local context explicitly.
 context = [(Permission.Allow, 'view_group', {'view', }),
 (Permission.Allow, 'edit_group', {'view', 'edit'})]
 autz_policy = ACLAutzPolicy(users, context)

 # install auth and autz middleware in aiohttp fashion
 aiohttp_auth.setup(app, auth_policy, autz_policy)

authorization using autz decorator applying to app handler
@autz_required('view')
async def handler_view(request):
 # authorization using permit
 if await autz.permit(request, 'edit'):
 pass

local_context = [(Permission.Deny, 'view_group', {'view', })]

authorization using autz decorator applying to app handler
using local_context to override global one.
@autz_required('view', local_context)
async def handler_view_local(request):
 # authorization using permit and local_context to
 # override global one
 if await autz.permit(request, 'edit', local_context):
 pass

Custom authorization policy for autz middleware

Tha autz middleware makes it possible to use custom athorization policy with
the same autz public interface for checking user permissions.
The follow example shows how to create such simple custom policy:

from aiohttp import web
from aiohttp_auth import autz, auth
from aiohttp_auth.autz import autz_required
from aiohttp_auth.autz.abc import AbstractAutzPolicy

class CustomAutzPolicy(AbstractAutzPolicy):

 def __init__(self, admin_user_identity):
 self.admin_user_identity = admin_user_identity

 async def permit(self, user_identity, permission, context=None):
 # All we need is to implement this method

 if permission == 'admin':
 # only admin_user_identity is allowed for 'admin' permission
 if user_identity == self.admin_user_identity:
 return True

 # forbid anyone else
 return False

 # allow any other permissions for all users
 return True

def init(loop):
 app = web.Application(loop=loop)
 ...
 # here you need to initialize aiohttp_auth.auth middleware
 auth_policy = ...
 ...
 # create custom authorization policy
 autz_policy = CustomAutzPolicy(admin_user_identity='Bob')

 # install auth and autz middleware in aiohttp fashion
 aiohttp_auth.setup(app, auth_policy, autz_policy)

authorization using autz decorator applying to app handler
@autz_required('admin')
async def handler_admin(request):
 # only Bob can run this handler

 # authorization using permit
 if await autz.permit(request, 'admin'):
 # only Bob can get here
 pass

@autz_required('guest')
async def handler_guest(request):
 # everyone can run this handler

 # authorization using permit
 if await autz.permit(request, 'guest'):
 # everyone can get here
 pass

ACL Middleware Usage

The acl_middleware` plugin (provided by the aiohttp_auth library), is layered
on top of the auth_middleware plugin, and provides a access control list (ACL)
system similar to that used by the Pyramid WSGI module.

Each user in the system is assigned a series of groups. Each group in the
system can then be assigned permissions that they are allowed (or not allowed)
to access. Groups and permissions are user defined, and need only be immutable
objects, so they can be strings, numbers, enumerations, or other immutable
objects.

To specify what groups a user is a member of, a function is passed to the
acl_middleware factory which taks a user_id (as returned from the
auth.get_auth function) as a parameter, and expects a sequence of permitted ACL
groups to be returned. This can be a empty tuple to represent no explicit
permissions, or None to explicitly forbid this particular user_id. Note that
the user_id passed may be None if no authenticated user exists. Building apon
our example, a function may be defined as:

from aiohttp import web
from aiohttp_auth import acl, auth
import aiohttp_session

group_map = {'user': (,),
 'super_user': ('edit_group',),}

async def acl_group_callback(user_id):
 # The user_id could be None if the user is not authenticated, but in
 # our example, we allow unauthenticated users access to some things, so
 # we return an empty tuple.
 return group_map.get(user_id, tuple())

def init(loop):
 ...

 app = web.Application(loop=loop)
 # setup session middleware
 storage = aiohttp_session.EncryptedCookieStorage(urandom(32))
 aiohttp_session.setup(app, storage)

 # setup aiohttp_auth.auth middleware
 policy = auth.SessionTktAuthentication(urandom(32), 60, include_ip=True)
 auth.setup(app, policy)

 # setup aiohttp_auth.acl middleware
 acl.setup(app, acl_group_callback)

 ...

Note that the ACL groups returned by the function will be modified by the
acl_middleware to also include the Group.Everyone group (if the value returned
is not None), and also the Group.AuthenticatedUser if the user_id
is not None.

Instead of acl_group_callback as a coroutine the AbstractACLGroupsCallback
class can be used (all you need is to override acl_groups method):

from aiohttp import web
from aiohttp_auth import acl, auth
from aiohttp_auth.acl.abc import AbstractACLGroupsCallback
import aiohttp_session

class ACLGroupsCallback(AbstractACLGroupsCallback):
 def __init__(self, cache):
 # Save here data you need to retrieve groups
 # for example cache or db connection
 self.cache = cache

 async def acl_groups(self, user_id):
 # override abstract method with needed logic
 user = self.cache.get(user_id, None)
 ...
 groups = user.groups() if user else tuple()
 return groups

def init(loop):
 ...

 app = web.Application(loop=loop)
 # setup session middleware
 storage = aiohttp_session.EncryptedCookieStorage(urandom(32))
 aiohttp_session.setup(app, storage)

 # setup aiohttp_auth.auth middleware
 policy = auth.SessionTktAuthentication(urandom(32), 60, include_ip=True)
 auth.setup(app, policy)

 # setup aiohttp_auth.acl middleware
 cache = ...
 acl_groups_callback = ACLGroupsCallback(cache)
 acl.setup(app, acl_group_callback)

 ...

With the groups defined, an ACL context can be specified for looking up what
permissions each group is allowed to access. A context is a sequence of ACL
tuples which consist of a Allow/Deny action, a group, and a sequence of
permissions for that ACL group. For example:

from aiohttp_auth.permissions import Group, Permission

context = [(Permission.Allow, Group.Everyone, ('view',)),
 (Permission.Allow, Group.AuthenticatedUser, ('view', 'view_extra')),
 (Permission.Allow, 'edit_group', ('view', 'view_extra', 'edit')),]

Views can then be defined using the acl_required decorator, allowing only
specific users access to a particular view. The acl_required decorator
specifies a permission required to access the view, and a context to check
against:

@acl_required('view', context)
async def view_view(request):
 return web.Response(body='OK'.encode('utf-8'))

@acl_required('view_extra', context)
async def view_extra_view(request):
 return web.Response(body='OK'.encode('utf-8'))

@acl_required('edit', context)
async def edit_view(request):
 return web.Response(body='OK'.encode('utf-8'))

In our example, non-logged in users will have access to the view_view, ‘user’
will have access to both the view_view and view_extra_view, and ‘super_user’
will have access to all three views. If no ACL group of the user matches the
ACL permission requested by the view, the decorator raises web.HTTPForbidden.

ACL tuple sequences are checked in order, with the first tuple that matches the
group the user is a member of, AND includes the permission passed to the
function, declared to be the matching ACL group. This means that if the ACL
context was modified to:

context = [(Permission.Allow, Group.Everyone, ('view',)),
 (Permission.Deny, 'super_user', ('view_extra')),
 (Permission.Allow, Group.AuthenticatedUser, ('view', 'view_extra')),
 (Permission.Allow, 'edit_group', ('view', 'view_extra', 'edit')),]

In this example the ‘super_user’ would be denied access to the view_extra_view
even though they are an AuthenticatedUser and in the ‘edit_group’.

API Documentation

	Authentication Middleware API
	Public Middleware API

	Decorators

	Abstract Authentication Policy

	Abstract Ticket Authentication Policy

	Concrete Ticket Authentication Policies

	Authorization Middleware API
	Setup auth and autz

	Public Middleware API

	Decorators

	ACL Authorization Policy

	ACL Middleware API
	Public Middleware API

	Decorators

	AbstractACLGroupsCallback Class

Authentication Middleware API

Public Middleware API

Athentication middleware.

	
aiohttp_auth.auth.auth.setup(app, policy)

	Setup middleware in aiohttp fashion.

	Parameters

	
	app – aiohttp Application object.

	policy – An authentication policy with a base class of
AbstractAuthentication.

	
aiohttp_auth.auth.auth.auth_middleware(policy)

	Return an authentication middleware factory.

The middleware is for use by the aiohttp application object.

	Parameters

	policy – A authentication policy with a base class of
AbstractAuthentication.

	
aiohttp_auth.auth.auth.get_auth(request)

	Return the user_id associated with a particular request.

	Parameters

	request – aiohttp Request object.

	Returns

	The user_id associated with the request, or None if no user is
associated with the request.

	Raises

	RuntimeError – Middleware is not installed

	
aiohttp_auth.auth.auth.remember(request, user_id)

	Called to store and remember the userid for a request.

	Parameters

	
	request – aiohttp Request object.

	user_id – String representing the user_id to remember

	Raises

	RuntimeError – Middleware is not installed

	
aiohttp_auth.auth.auth.forget(request)

	Called to forget the userid for a request.

	Parameters

	request – aiohttp Request object.

	Raises

	RuntimeError – Middleware is not installed.

Decorators

Authentication decorators.

	
aiohttp_auth.auth.decorators.auth_required(func)

	Decorator to check if an user has been authenticated for this request.

Allows views to be decorated like:

@auth_required
async def view_func(request):
 pass

providing a simple means to ensure that whoever is calling the function
has the correct authentication details.

Warning

Changed in version 0.2.0: In versions prior 0.2.0 the web.HTTPForbidden was raised
(status code 403) if user was not authenticated. Now the
web.HTTPUnauthorized (status code 401) is raised to distinguish
authentication error from authorization one.

	Parameters

	func – Function object being decorated.

	Returns

	A function object that will raise web.HTTPUnauthorized() if the
passed request does not have the correct permissions to access the
view.

Abstract Authentication Policy

	
class aiohttp_auth.auth.abstract_auth.AbstractAuthentication

	Abstract authentication policy class

	
forget(request)

	Abstract function called to forget the userid for a request

	Parameters

	request – aiohttp Request object

	
get(request)

	Abstract function called to get the user_id for the request.

	Parameters

	request – aiohttp Request object.

	Returns

	The user_id for the request, or None if the user_id is not
authenticated.

	
process_response(request, response)

	Called to perform any processing of the response required (setting
cookie data, etc).

Default implementation does nothing.

	Parameters

	
	request – aiohttp Request object.

	response – response object returned from the handled view

	
remember(request, user_id)

	Abstract function called to store the user_id for a request.

	Parameters

	
	request – aiohttp Request object.

	user_id – String representing the user_id to remember

Abstract Ticket Authentication Policy

	
class aiohttp_auth.auth.ticket_auth.TktAuthentication(secret, max_age, reissue_time=None, include_ip=False, cookie_name='AUTH_TKT')

	Ticket authentication mechanism based on the ticket_auth library.

This class is an abstract class that creates a ticket and validates it.
Storage of the ticket data itself is abstracted to allow different
implementations to store the cookie differently (encrypted, server side
etc).

	
__init__(secret, max_age, reissue_time=None, include_ip=False, cookie_name='AUTH_TKT')

	Initializes the ticket authentication mechanism.

	Parameters

	
	secret – Byte sequence used to initialize the ticket factory.

	max_age – Integer representing the number of seconds to allow the
ticket to remain valid for after being issued.

	reissue_time – Integer representing the number of seconds before
a valid login will cause a ticket to be reissued. If this
value is 0, a new ticket will be reissued on every request
which requires authentication. If this value is None, no
tickets will be reissued, and the max_age will always expire
the ticket.

	include_ip – If true, requires the clients ip details when
calculating the ticket hash

	cookie_name – Name to use to reference the ticket details.

	
cookie_name

	Returns the name of the cookie stored in the session

	
forget(request)

	Called to forget the userid for a request

This function calls the forget_ticket() function to forget the ticket
associated with this request.

	Parameters

	request – aiohttp Request object

	
forget_ticket(request)

	Abstract function called to forget the ticket data for a request.

	Parameters

	request – aiohttp Request object.

	
get(request)

	Gets the user_id for the request.

Gets the ticket for the request using the get_ticket() function, and
authenticates the ticket.

	Parameters

	request – aiohttp Request object.

	Returns

	The userid for the request, or None if the ticket is not
authenticated.

	
get_ticket(request)

	Abstract function called to return the ticket for a request.

	Parameters

	request – aiohttp Request object.

	Returns

	A ticket (string like) object, or None if no ticket is available
for the passed request.

	
process_response(request, response)

	If a reissue was requested, only reissue if the response was a
valid 2xx response

	
remember(request, user_id)

	Called to store the userid for a request.

This function creates a ticket from the request and user_id, and calls
the abstract function remember_ticket() to store the ticket.

	Parameters

	
	request – aiohttp Request object.

	user_id – String representing the user_id to remember

	
remember_ticket(request, ticket)

	Abstract function called to store the ticket data for a request.

	Parameters

	
	request – aiohttp Request object.

	ticket – String like object representing the ticket to be stored.

Concrete Ticket Authentication Policies

	
class aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication(secret, max_age, reissue_time=None, include_ip=False, cookie_name='AUTH_TKT')

	Ticket authentication mechanism based on the ticket_auth library, with
ticket data being stored as a cookie in the response.

	
__init__(secret, max_age, reissue_time=None, include_ip=False, cookie_name='AUTH_TKT')

	Initializes the ticket authentication mechanism.

	Parameters

	
	secret – Byte sequence used to initialize the ticket factory.

	max_age – Integer representing the number of seconds to allow the
ticket to remain valid for after being issued.

	reissue_time – Integer representing the number of seconds before
a valid login will cause a ticket to be reissued. If this
value is 0, a new ticket will be reissued on every request
which requires authentication. If this value is None, no
tickets will be reissued, and the max_age will always expire
the ticket.

	include_ip – If true, requires the clients ip details when
calculating the ticket hash

	cookie_name – Name to use to reference the ticket details.

	
cookie_name

	Returns the name of the cookie stored in the session

	
forget(request)

	Called to forget the userid for a request

This function calls the forget_ticket() function to forget the ticket
associated with this request.

	Parameters

	request – aiohttp Request object

	
forget_ticket(request)

	Called to forget the ticket data a request

	Parameters

	request – aiohttp Request object.

	
get(request)

	Gets the user_id for the request.

Gets the ticket for the request using the get_ticket() function, and
authenticates the ticket.

	Parameters

	request – aiohttp Request object.

	Returns

	The userid for the request, or None if the ticket is not
authenticated.

	
get_ticket(request)

	Called to return the ticket for a request.

	Parameters

	request – aiohttp Request object.

	Returns

	A ticket (string like) object, or None if no ticket is available
for the passed request.

	
process_response(request, response)

	Called to perform any processing of the response required.

This function stores any cookie data in the COOKIE_AUTH_KEY as a
cookie in the response object. If the value is a empty string, the
associated cookie is deleted instead.

This function requires the response to be a aiohttp Response object,
and assumes that the response has not prepared if the remember or
forget functions are called during the request.

	Parameters

	
	request – aiohttp Request object.

	response – response object returned from the handled view

	Raises

	RuntimeError – Raised if response has already prepared.

	
remember(request, user_id)

	Called to store the userid for a request.

This function creates a ticket from the request and user_id, and calls
the abstract function remember_ticket() to store the ticket.

	Parameters

	
	request – aiohttp Request object.

	user_id – String representing the user_id to remember

	
remember_ticket(request, ticket)

	Called to store the ticket data for a request.

Ticket data is stored in COOKIE_AUTH_KEY in the request object, and
written as cookie data to the response during the process_response()
function.

	Parameters

	
	request – aiohttp Request object.

	ticket – String like object representing the ticket to be stored.

	
class aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication(secret, max_age, reissue_time=None, include_ip=False, cookie_name='AUTH_TKT')

	Ticket authentication mechanism based on the ticket_auth library, with
ticket data being stored in the aiohttp_session object.

	
__init__(secret, max_age, reissue_time=None, include_ip=False, cookie_name='AUTH_TKT')

	Initializes the ticket authentication mechanism.

	Parameters

	
	secret – Byte sequence used to initialize the ticket factory.

	max_age – Integer representing the number of seconds to allow the
ticket to remain valid for after being issued.

	reissue_time – Integer representing the number of seconds before
a valid login will cause a ticket to be reissued. If this
value is 0, a new ticket will be reissued on every request
which requires authentication. If this value is None, no
tickets will be reissued, and the max_age will always expire
the ticket.

	include_ip – If true, requires the clients ip details when
calculating the ticket hash

	cookie_name – Name to use to reference the ticket details.

	
cookie_name

	Returns the name of the cookie stored in the session

	
forget(request)

	Called to forget the userid for a request

This function calls the forget_ticket() function to forget the ticket
associated with this request.

	Parameters

	request – aiohttp Request object

	
forget_ticket(request)

	Called to forget the ticket data a request

	Parameters

	request – aiohttp Request object.

	
get(request)

	Gets the user_id for the request.

Gets the ticket for the request using the get_ticket() function, and
authenticates the ticket.

	Parameters

	request – aiohttp Request object.

	Returns

	The userid for the request, or None if the ticket is not
authenticated.

	
get_ticket(request)

	Called to return the ticket for a request.

	Parameters

	request – aiohttp Request object.

	Returns

	A ticket (string like) object, or None if no ticket is available
for the passed request.

	
process_response(request, response)

	If a reissue was requested, only reissue if the response was a
valid 2xx response

	
remember(request, user_id)

	Called to store the userid for a request.

This function creates a ticket from the request and user_id, and calls
the abstract function remember_ticket() to store the ticket.

	Parameters

	
	request – aiohttp Request object.

	user_id – String representing the user_id to remember

	
remember_ticket(request, ticket)

	Called to store the ticket data for a request.

Ticket data is stored in the aiohttp_session object

	Parameters

	
	request – aiohttp Request object.

	ticket – String like object representing the ticket to be stored.

Authorization Middleware API

Setup auth and autz

	
aiohttp_auth.setup(app, auth_policy, autz_policy)

	Setup auth and autz middleware in aiohttp fashion.

	Parameters

	
	app – aiohttp Application object.

	auth_policy – An authentication policy with a base class of
AbstractAuthentication.

	autz_policy – An authorization policy with a base class of
AbstractAutzPolicy

Public Middleware API

Authorization middleware.

	
aiohttp_auth.autz.autz.setup(app, autz_policy)

	Setup an authorization middleware in aiohttp fashion.

Note that aiohttp_auth.auth middleware should be installed too to use
autz middleware. So the preferred way to install this middleware is to
use global aiohttp_auth.setup function.

	Parameters

	
	app – aiohttp Application object.

	autz_policy – A subclass of
aiohttp_auth.autz.abc.AbstractAutzPolicy.

	
aiohttp_auth.autz.autz.autz_middleware(autz_policy)

	Return authorization middleware factory.

Return aiohttp_auth.autz middleware factory for use by the aiohttp
application object. This middleware can be used only with
aiohttp_auth.auth middleware installed.

The autz middleware provides follow interface to use in applications:

	Using autz.permit coroutine.

	Using autz.autz_required decorator for aiohttp handlers.

Note that the recomended way to initialize this middleware is through
aiohttp_auth.autz.setup or aiohttp_auth.setup functions. As the
autz middleware can be used only with authentication
aiohttp_auth.auth middleware it is preferred to use
aiohttp_auth.setup.

	Parameters

	autz_policy – a subclass of
aiohttp_auth.autz.abc.AbstractAutzPolicy.

	Returns

	An aiohttp middleware factory.

	
aiohttp_auth.autz.autz.permit(request, permission, context=None)

	Check if permission is allowed for given request with given context.

The authorization checking is provided by authorization policy which is
set by setup function. The nature of permission and context is also
determined by the given policy.

Note that this coroutine uses aiohttp_auth.auth.get_auth coroutine
to determine user_identity for given request. So that middleware
should be installed too.

Note that some additional exceptions could be raised by certain policy
while checking the permission.

	Parameters

	
	request – aiohttp Request object.

	permission – The specific permission requested.

	context – A context provided for checking permissions. Could be
optional if authorization policy provides a way to specify a
global application context.

	Returns

	True if permission is allowed False otherwise.

	Raises

	RuntimeError – If auth or autz middleware is not installed.

Decorators

Authorization decorators.

	
aiohttp_auth.autz.decorators.autz_required(permission, context=None)

	Create decorator to check if user has requested permission.

This function constructs a decorator that can be used to check a aiohttp’s
view for authorization before calling it. It uses the autz.permit
function to check the request against the passed permission and context.
If the user does not have the correct permission to run this function, it
raises web.HTTPForbidden.

Note that context can be optional if authorization policy provides a way
to specify global application context. Also context parameter can be used
to override global context if it is provided by authorization policy.

Note that some exceptions could be raised by certain policy while checking
the permission.

	Parameters

	
	permission – The specific permission requested.

	context – A context provided for checking permissions. Could be
optional if authorization policy provides a way to specify a
global application context.

	Returns

	A decorator which will check the request passed has the permission for
the given context. The decorator will raise web.HTTPForbidden if
the user does not have the correct permissions to access the view.

ACL Authorization Policy

ACL authorization policy.

This module introduces AbstractACLAutzPolicy - an abstract base class to
create ACL authorization policy class. The subclass should define how to
retrieve user’s groups.

	
class aiohttp_auth.autz.policy.acl.AbstractACLAutzPolicy(context=None)

	Abstract base class for ACL authorization policy.

As the library does not know how to get groups for user and it is always
up to application, it provides abstract authorization ACL policy
class. Subclass should implement acl_groups method to use it with
autz_middleware.

Note that an ACL context can be specified globally while initializing
policy or locally through autz.permit function’s parameter. A local
context will always override a global one while checking permissions.
If there is no local context and global context is not set then the
permit method will raise a RuntimeError.

A context is a sequence of ACL tuples which consist of an
Allow/Deny action, a group, and a set of permissions for that ACL
group. For example:

context = [(Permission.Allow, 'view_group', {'view', }),
 (Permission.Allow, 'edit_group', {'view', 'edit'}),]

ACL tuple sequences are checked in order, with the first tuple that
matches the group the user is a member of, and includes the permission
passed to the function, to be the matching ACL group. If no ACL group is
found, the permit method returns False.

Groups and permissions need only be immutable objects, so can be strings,
numbers, enumerations, or other immutable objects.

Note

Groups that are returned by acl_groups (if they are not
None) will then be extended internally with Group.Everyone and
Group.AuthenticatedUser.

Usage example:

from aiohttp import web
from aiohttp_auth import autz
from aiohttp_auth.autz import autz_required
from aiohttp_auth.autz.policy import acl
from aiohttp_auth.permissions import Permission

class ACLAutzPolicy(acl.AbstractACLAutzPolicy):
 def __init__(self, users, context=None):
 super().__init__(context)

 # we will retrieve groups using some kind of users dict
 # here you can use db or cache or any other needed data
 self.users = users

 async def acl_groups(self, user_identity):
 # implement application specific logic here
 user = self.users.get(user_identity, None)
 if user is None:
 return None

 return user['groups']

def init(loop):
 app = web.Application(loop=loop)
 ...
 # here you need to initialize aiohttp_auth.auth middleware
 ...
 users = ...
 # Create application global context.
 # It can be overridden in autz.permit fucntion or in
 # autz_required decorator using local context explicitly.
 context = [(Permission.Allow, 'view_group', {'view', }),
 (Permission.Allow, 'edit_group', {'view', 'edit'})]
 autz.setup(app, ACLAutzPolicy(users, context))

authorization using autz decorator applying to app request handler
@autz_required('view')
async def handler_view(request):
 # authorization using permit
 if await autz.permit(request, 'edit'):
 pass

	
__init__(context=None)

	Initialize ACL authorization policy.

	Parameters

	context – global ACL context, default to None. Should be a list
of ACL rules.

	
acl_groups(user_identity)

	Return ACL groups for given user identity.

Subclass should implement this method to return a sequence of
groups for given user_identity.

	Parameters

	user_identity – User identity returned by auth.get_auth.

	Returns

	Sequence of ACL groups for the user identity (could be empty to
give a chance to Group.Everyone and
Group.AuthenticatedUser) or None (permit will always
return False).

	
permit(user_identity, permission, context=None)

	Check if user is allowed for given permission with given context.

	Parameters

	
	user_identity – Identity of the user returned by
aiohttp_auth.auth.get_auth function

	permission – The specific permission requested.

	context – A context provided for checking permissions. Could be
optional if a global context is specified through policy
initialization.

	Returns

	True if permission is allowed, False otherwise.

	Raises

	RuntimeError – If there is neither global context nor local one.

ACL Middleware API

Public Middleware API

ACL middleware.

	
aiohttp_auth.acl.acl.setup(app, groups_callback)

	Setup middleware in aiohttp fashion.

	Parameters

	
	app – aiohttp Application object.

	groups_callback – This is a callable which takes a user_id (as returned
from the auth.get_auth function), and expects a sequence of
permitted ACL groups to be returned. This can be a empty tuple to
represent no explicit permissions, or None to explicitly forbid
this particular user_id. Note that the user_id passed may be None
if no authenticated user exists.

	
aiohttp_auth.acl.acl.acl_middleware(callback)

	Return ACL middleware factory.

The middleware is for use by the aiohttp application object.

	Parameters

	callback – This is a callable which takes a user_id (as returned from
the auth.get_auth function), and expects a sequence of permitted
ACL groups to be returned. This can be a empty tuple to represent
no explicit permissions, or None to explicitly forbid this
particular user_id. Note that the user_id passed may be None if no
authenticated user exists.

	Returns

	A aiohttp middleware factory.

	
aiohttp_auth.acl.acl.get_permitted(request, permission, context)

	Check permission for the given request with the given context.

Return True if the one of the groups in the request has the requested
permission.

The function takes a request, a permission to check for and a context. A
context is a sequence of ACL tuples which consist of a Allow/Deny action,
a group, and a sequence of permissions for that ACL group. For example:

context = [(Permission.Allow, 'view_group', ('view',)),
 (Permission.Allow, 'edit_group', ('view', 'edit')),]

ACL tuple sequences are checked in order, with the first tuple that matches
the group the user is a member of, and includes the permission passed to
the function, to be the matching ACL group. If no ACL group is found, the
function returns False.

Groups and permissions need only be immutable objects, so can be strings,
numbers, enumerations, or other immutable objects.

	Parameters

	
	request – aiohttp Request object.

	permission – The specific permission requested.

	context – A sequence of ACL tuples.

	Returns

	The function gets the groups by calling get_user_groups() and returns
true if the groups are Allowed the requested permission, false
otherwise.

	Raises

	RuntimeError – If the ACL middleware is not installed.

	
aiohttp_auth.acl.acl.get_user_groups(request)

	Return the groups that the user in this request has access to.

This function gets the user id from the auth.get_auth function, and passes
it to the ACL callback function to get the groups.

	Parameters

	request – aiohttp Request object.

	Returns

	If the ACL callback function returns None, this function returns None.
Otherwise this function returns the sequence of group permissions
provided by the callback, plus the Everyone group. If user_id is not
None, the AuthnticatedUser group is added to the groups returned
by the function.

	Raises

	RuntimeError – If the ACL middleware is not installed.

	
aiohttp_auth.acl.acl.extend_user_groups(user_id, groups)

	Extend user groups with specific Groups.

	Parameters

	
	user_id – User identity from get_auth.

	groups – User groups.

	Returns

	If groups is None, this function returns None.
Otherwise this function extends groups with the Everyone group.
If user_id is not None, the AuthnticatedUser group is added to the
groups returned by the function.

	
aiohttp_auth.acl.acl.get_groups_permitted(groups, permission, context)

	Check if one of the groups has the requested permission.

	Parameters

	
	groups – A set of ACL groups.

	permission – The specific permission requested.

	context – A sequence of ACL tuples.

	Returns

	True if the groups are Allowed the requested permission, False
otherwise.

Decorators

ACL middleware decorators.

	
aiohttp_auth.acl.decorators.acl_required(permission, context)

	Create decorator to check given permission with given context.

Return a decorator that checks if a user has the requested permission
from the passed acl context.

This function constructs a decorator that can be used to check a aiohttp’s
view for authorization before calling it. It uses the get_permission()
function to check the request against the passed permission and context. If
the user does not have the correct permission to run this function, it
raises web.HTTPForbidden.

	Parameters

	
	permission – The specific permission requested.

	context – Either a sequence of ACL tuples, or a callable that returns a
sequence of ACL tuples. For more information on ACL tuples, see
get_permission().

	Returns

	A decorator which will check the request passed has the permission for
the given context. The decorator will raise HTTPForbidden if the user
does not have the correct permissions to access the view.

AbstractACLGroupsCallback Class

	
class aiohttp_auth.acl.abc.AbstractACLGroupsCallback

	Abstract base class for acl_groups_callback callabel.

User should create class deriving from this one, override acl_groups
method and register object of that class with setup function as
acl_groups_callback.

Usage example:

class ACLGroupsCallback(AbstractACLGroupsCallback):

 def __init__(self, cache):
 # store some kind of cache
 self.cache = cache

 async def acl_groups(self, user_id):
 # implement logic to return user's groups.
 user = await self.cache.get(user_id)
 return user.groups()

def init(loop):
 app = web.Application(loop=loop)
 ...
 cache = ...
 acl_groups_callback = ACLGroupsCallback(cache)

 acl.setup(app, acl_groups_callback)
 ...

	
acl_groups(user_id)

	Return ACL groups for given user identity.

Note that the ACL groups returned by this method will be modified by
the acl_middleware to also include the Group.Everyone group (if the
value returned is not None), and also the Group.AuthenticatedUser
if the user_id is not None.

	Parameters

	user_id – User identity (as returned from the auth.get_auth
function). Note that the user_id passed may be None if no
authenticated user exists.

	Returns

	A sequence of permitted ACL groups. This can be a empty tuple to
represent no explicit permissions, or None to explicitly forbid
this particular user_id.

Changelog

0.2.2 (2017-04-18)

	Move to aiohttp 2.x.

	Add support of middlewares decorators for aiohttp.web.View handlers.

	Add uvloop as IO loop for tests.

0.2.1 (2017-02-16)

	autz middleware:

	Simplify acl authorization policy by moving permit logic into policy.acl.AbstractACLAutzPolicy.

	Remove policy.acl.AbstractACLContext class.

	Remove policy.acl.NaiveACLContext class.

	Remove policy.acl.ACLContext class.

0.2.0 (2017-02-14)

	acl middleware:

	Add setup function for acl middleware to install it in aiohttp fashion.

	Fix bug in acl_required decorator.

	Fix a possible security issue with acl groups. The issue is follow: the default behavior is
to add user_id to groups for authenticated users by the acl middleware, but if
user_id is equal to some of acl groups that user suddenly has the permissions he is not
allowed for. So to avoid this kind of issue user_id is not added to groups any more.

	Introduce AbstractACLGroupsCallback class in acl middleware to make it possible easily create
callable object by inheriting from the abstract class and implementing acl_groups method. It
can be useful to store additional information (such database connection etc.) within such class.
An instance of this subclass can be used in place of acl_groups_callback parameter.

	auth middleware:

	Add setup function for auth middleware to install it in aiohttp fashion.

	auth.auth_required raised now a web.HTTPUnauthorized instead of a web.HTTPForbidden.

	Introduce generic authorization middleware autz that performs authorization through the same
interface (autz.permit coroutine and autz_required decorator) but using different policies.
Middleware has the ACL authorization as the built in policy which works in the same way as acl
middleware. Users are free to add their own custom policies or to modify ACL one.

	Add global aiohttp_auth.setup function to install auth and autz middlewares at once
in aiohttp fashion.

	Add docs.

	Rewrite tests using pytest and pytest-aiohttp.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aiohttp_auth	

 	
 	
 aiohttp_auth.acl.acl	

 	
 	
 aiohttp_auth.acl.decorators	

 	
 	
 aiohttp_auth.auth.auth	

 	
 	
 aiohttp_auth.auth.decorators	

 	
 	
 aiohttp_auth.autz.autz	

 	
 	
 aiohttp_auth.autz.decorators	

 	
 	
 aiohttp_auth.autz.policy.acl	

Index

 _
 | A
 | C
 | E
 | F
 | G
 | P
 | R
 | S
 | T

_

 	
 	__init__() (aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication method)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication method)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication method)

 	(aiohttp_auth.autz.policy.acl.AbstractACLAutzPolicy method)

A

 	
 	AbstractACLAutzPolicy (class in aiohttp_auth.autz.policy.acl)

 	AbstractACLGroupsCallback (class in aiohttp_auth.acl.abc)

 	AbstractAuthentication (class in aiohttp_auth.auth.abstract_auth)

 	acl_groups() (aiohttp_auth.acl.abc.AbstractACLGroupsCallback method)

 	(aiohttp_auth.autz.policy.acl.AbstractACLAutzPolicy method)

 	acl_middleware() (in module aiohttp_auth.acl.acl)

 	acl_required() (in module aiohttp_auth.acl.decorators)

 	aiohttp_auth.acl.acl (module)

 	aiohttp_auth.acl.decorators (module)

 	
 	aiohttp_auth.auth.auth (module)

 	aiohttp_auth.auth.decorators (module)

 	aiohttp_auth.autz.autz (module)

 	aiohttp_auth.autz.decorators (module)

 	aiohttp_auth.autz.policy.acl (module)

 	auth_middleware() (in module aiohttp_auth.auth.auth)

 	auth_required() (in module aiohttp_auth.auth.decorators)

 	autz_middleware() (in module aiohttp_auth.autz.autz)

 	autz_required() (in module aiohttp_auth.autz.decorators)

C

 	
 	cookie_name (aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication attribute)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication attribute)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication attribute)

 	
 	CookieTktAuthentication (class in aiohttp_auth.auth.cookie_ticket_auth)

E

 	
 	extend_user_groups() (in module aiohttp_auth.acl.acl)

F

 	
 	forget() (aiohttp_auth.auth.abstract_auth.AbstractAuthentication method)

 	(aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication method)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication method)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication method)

 	(in module aiohttp_auth.auth.auth)

 	
 	forget_ticket() (aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication method)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication method)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication method)

G

 	
 	get() (aiohttp_auth.auth.abstract_auth.AbstractAuthentication method)

 	(aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication method)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication method)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication method)

 	get_auth() (in module aiohttp_auth.auth.auth)

 	
 	get_groups_permitted() (in module aiohttp_auth.acl.acl)

 	get_permitted() (in module aiohttp_auth.acl.acl)

 	get_ticket() (aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication method)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication method)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication method)

 	get_user_groups() (in module aiohttp_auth.acl.acl)

P

 	
 	permit() (aiohttp_auth.autz.policy.acl.AbstractACLAutzPolicy method)

 	(in module aiohttp_auth.autz.autz)

 	process_response() (aiohttp_auth.auth.abstract_auth.AbstractAuthentication method)

 	(aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication method)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication method)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication method)

R

 	
 	remember() (aiohttp_auth.auth.abstract_auth.AbstractAuthentication method)

 	(aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication method)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication method)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication method)

 	(in module aiohttp_auth.auth.auth)

 	
 	remember_ticket() (aiohttp_auth.auth.cookie_ticket_auth.CookieTktAuthentication method)

 	(aiohttp_auth.auth.session_ticket_auth.SessionTktAuthentication method)

 	(aiohttp_auth.auth.ticket_auth.TktAuthentication method)

S

 	
 	SessionTktAuthentication (class in aiohttp_auth.auth.session_ticket_auth)

 	setup() (in module aiohttp_auth)

 	(in module aiohttp_auth.acl.acl)

 	(in module aiohttp_auth.auth.auth)

 	(in module aiohttp_auth.autz.autz)

T

 	
 	TktAuthentication (class in aiohttp_auth.auth.ticket_auth)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to aiohttp_auth_autz’s documentation!

 		
 Getting Started

 		
 Middleware plugins

 		
 Authentication Middleware Usage

 		
 Authorization Middleware Usage

 		
 ACL authorization policy for autz middleware

 		
 Custom authorization policy for autz middleware

 		
 ACL Middleware Usage

 		
 API Documentation

 		
 Authentication Middleware API

 		
 Public Middleware API

 		
 Decorators

 		
 Abstract Authentication Policy

 		
 Abstract Ticket Authentication Policy

 		
 Concrete Ticket Authentication Policies

 		
 Authorization Middleware API

 		
 Setup auth and autz

 		
 Public Middleware API

 		
 Decorators

 		
 ACL Authorization Policy

 		
 ACL Middleware API

 		
 Public Middleware API

 		
 Decorators

 		
 AbstractACLGroupsCallback Class

 		
 Changelog

 		
 0.2.2 (2017-04-18)

 		
 0.2.1 (2017-02-16)

 		
 0.2.0 (2017-02-14)

_static/up.png

_static/up-pressed.png

