
aiohttp_auth_autz Documentation
Release

ilex

February 14, 2017

Contents:

1 Install 3

2 License 5
2.1 Getting Started . 5
2.2 Middleware plugins . 7
2.3 API Documentation . 16
2.4 Changelog . 16

3 Indices and tables 19

i

ii

aiohttp_auth_autz Documentation, Release

This library provides authorization and authentication middleware plugins for aiohttp servers.

These plugins are designed to be lightweight, simple, and extensible, allowing the library to be reused regardless of
the backend authentication mechanism. This provides a familiar framework across projects.

There are three middleware plugins provided by the library. The auth_middleware plugin provides a simple
system for authenticating a users credentials, and ensuring that the user is who they say they are.

The autz_middleware plugin provides a generic way of authorization using different authorization policies. There
is the ACL authorization policy as a part of the plugin.

The acl_middleware plugin provides a simple access control list authorization mechanism, where users are pro-
vided access to different view handlers depending on what groups the user is a member of. It is recomended to use
autz_middleware with ACL policy instead of this middleware.

This is a fork of aiohttp_auth library that fixes some bugs and security issues and also introduces a generic authorization
autz middleware with built in ACL authorization policy.

Contents: 1

https://github.com/gnarlychicken/aiohttp_auth

aiohttp_auth_autz Documentation, Release

2 Contents:

CHAPTER 1

Install

Install aiohttp_auth_autz using pip:

$ pip install aiohttp_auth_autz

3

aiohttp_auth_autz Documentation, Release

4 Chapter 1. Install

CHAPTER 2

License

The library is licensed under a MIT license.

2.1 Getting Started

A simple example how to use authentication and authorization middleware with an aiohttp application.

import asyncio

from os import urandom

import aiohttp_auth

from aiohttp import web
from aiohttp_auth import auth, autz
from aiohttp_auth.auth import auth_required
from aiohttp_auth.autz import autz_required
from aiohttp_auth.autz.policy import acl
from aiohttp_auth.permissions import Permission, Group

db = {
'bob': {

'password': 'bob_password',
'groups': ['guest', 'staff']

},
'alice': {

'password': 'alice_password',
'groups': ['guest']

}
}

global ACL context
context = [(Permission.Allow, 'guest', {'view', }),

(Permission.Deny, 'guest', {'edit', }),
(Permission.Allow, 'staff', {'view', 'edit', 'admin_view'}),
(Permission.Allow, Group.Everyone, {'view_home', })]

create an ACL authorization policy class
class ACLAutzPolicy(acl.AbstractACLAutzPolicy):

"""The concrete ACL authorization policy."""

5

aiohttp_auth_autz Documentation, Release

def __init__(self, db, context=None):
do not forget to call parent __init__
super().__init__(context)

self.db = db

async def acl_groups(self, user_identity):
"""Return acl groups for given user identity.

This method should return a set of groups for given user_identity.

Args:
user_identity: User identity returned by auth.get_auth.

Returns:
Set of acl groups for the user identity.

"""
implement application specific logic here
user = self.db.get(user_identity, None)
if user is None:

return empty set of groups for not authenticated users
middleware will fill it with Group.Everyone
return set()

return user['groups']

async def login(request):
http://127.0.0.1:8080/login?username=bob&password=bob_password
user_identity = request.GET.get('username', None)
password = request.GET.get('password', None)
if user_identity in db and password == db[user_identity]['password']:

remember user identity
await auth.remember(request, user_identity)
return web.Response(text='Ok')

raise web.HTTPUnauthorized()

only authenticated users can logout
if user is not authenticated auth_required decorator
will raise a web.HTTPUnauthorized
@auth_required
async def logout(request):

forget user identity
await auth.forget(request)
return web.Response(text='Ok')

user should have a group with 'admin_view' permission allowed
if he does not autz_required will raise a web.HTTPForbidden
@autz_required('admin_view')
async def admin(request):

return web.Response(text='Admin Page')

@autz_required('view_home')
async def home(request):

6 Chapter 2. License

aiohttp_auth_autz Documentation, Release

text = 'Home page.'
check if current user is permitted with 'admin_view' permission
if await autz.permit(request, 'admin_view'):

text += ' Admin page: http://127.0.0.1:8080/admin'
get current user identity
user_identity = await auth.get_auth(request)
if user_identity is not None:

user is authenticated
text += ' Logout: http://127.0.0.1:8080/logout'

return web.Response(text=text)

@autz_required('view')
async def view(request):

return web.Response(text='View Page')

def init_app(loop):
app = web.Application(loop=loop)

Create an auth ticket mechanism that expires after 1 minute (60
seconds), and has a randomly generated secret. Also includes the
optional inclusion of the users IP address in the hash
auth_policy = auth.CookieTktAuthentication(urandom(32), 60,

include_ip=True)

Create an ACL authorization policy
autz_policy = ACLAutzPolicy(db, context)

setup middlewares in aiohttp fashion
aiohttp_auth.setup(app, auth_policy, autz_policy)

app.router.add_get('/', home)
app.router.add_get('/login', login)
app.router.add_get('/logout', logout)
app.router.add_get('/admin', admin)
app.router.add_get('/view', view)

return app

loop = asyncio.get_event_loop()
app = init_app(loop)

web.run_app(app, host='127.0.0.1')

2.2 Middleware plugins

This library provides authorization and authentication middleware plugins for aiohttp servers.

These plugins are designed to be lightweight, simple, and extensible, allowing the library to be reused regardless of
the backend authentication mechanism. This provides a familiar framework across projects.

There are three middleware plugins provided by the library. The auth_middleware plugin provides a simple
system for authenticating a users credentials, and ensuring that the user is who they say they are.

The autz_middleware plugin provides a generic way of authorization using different authorization policies. There

2.2. Middleware plugins 7

aiohttp_auth_autz Documentation, Release

is the ACL authorization policy as a part of the plugin.

The acl_middleware plugin provides a simple access control list authorization mechanism, where users are pro-
vided access to different view handlers depending on what groups the user is a member of. It is recomended to use
autz_middleware with ACL policy instead of this middleware.

2.2.1 Authentication Middleware Usage

The auth_middleware plugin provides a simple abstraction for remembering and retrieving the authentication
details for a user across http requests. Typically, an application would retrieve the login details for a user, and call the
remember function to store the details. These details can then be recalled in future requests. A simplistic example of
users stored in a python dict would be:

from aiohttp_auth import auth
from aiohttp import web

Simplistic name/password map
db = {'user': 'password',

'super_user': 'super_password'}

async def login_view(request):
params = await request.post()
user = params.get('username', None)
if (user in db and

params.get('password', None) == db[user]):

User is in our database, remember their login details
await auth.remember(request, user)
return web.Response(body='OK'.encode('utf-8'))

raise web.HTTPUnauthorized()

User data can be verified in later requests by checking that their username is valid explicity, or by using the
auth_required decorator:

async def check_explicitly_view(request):
user = await auth.get_auth(request)
if user is None:

Show login page
return web.Response(body='Not authenticated'.encode('utf-8'))

return web.Response(body='OK'.encode('utf-8'))

@auth.auth_required
async def check_implicitly_view(request):

HTTPUnauthorized is raised by the decorator if user is not valid
return web.Response(body='OK'.encode('utf-8'))

To end the session, the user data can be forgotten by using the forget function:

@auth.auth_required
async def logout_view(request):

await auth.forget(request)
return web.Response(body='OK'.encode('utf-8'))

The actual mechanisms for storing the authentication credentials are passed as a policy to the session manager mid-
dleware. New policies can be implemented quite simply by overriding the AbstractAuthentication class.

8 Chapter 2. License

aiohttp_auth_autz Documentation, Release

The aiohttp_auth package currently provides two authentication policies, a cookie based policy based loosely
on mod_auth_tkt (Apache ticket module), and a second policy that uses the aiohttp_session class to store
authentication tickets.

The cookie based policy (CookieTktAuthentication) is a simple mechanism for storing the username of the
authenticated user in a cookie, along with a hash value known only to the server. The cookie contains the maximum
age allowed before the ticket expires, and can also use the IP address (v4 or v6) of the user to link the cookie to that
address. The cookies data is not encrypted, but only holds the username of the user and the cookies expiration time,
along with its security hash:

def init(loop):
app = web.Application(loop=loop)

Create a auth ticket mechanism that expires after 1 minute (60
seconds), and has a randomly generated secret. Also includes the
optional inclusion of the users IP address in the hash
policy = auth.CookieTktAuthentication(urandom(32), 60,

include_ip=True)

setup middleware in aiohttp fashion
auth.setup(app, policy)

app.router.add_route('POST', '/login', login_view)
app.router.add_route('GET', '/logout', logout_view)
app.router.add_route('GET', '/test0', check_explicitly_view)
app.router.add_route('GET', '/test1', check_implicitly_view)

return app

The SessionTktAuthentication policy provides many of the same features, but stores the same ticket cre-
dentials in a aiohttp_session object, allowing different storage mechanisms such as Redis storage, and
EncryptedCookieStorage:

from aiohttp_session import get_session, session_middleware
from aiohttp_session.cookie_storage import EncryptedCookieStorage

def init(loop):
app = web.Application(loop=loop)

setup session middleware in aiohttp fashion
storage = EncryptedCookieStorage(urandom(32))
aiohttp_session.setup(app, storage)

Create an auth ticket mechanism that expires after 1 minute (60
seconds), and has a randomly generated secret. Also includes the
optional inclusion of the users IP address in the hash
policy = auth.SessionTktAuthentication(urandom(32), 60,

include_ip=True)

setup aiohttp_auth.auth middleware in aiohttp fashion
auth.setup(app, policy)

...

2.2.2 Authorization Middleware Usage

The autz middleware provides follow interface to use in applications:

2.2. Middleware plugins 9

aiohttp_auth_autz Documentation, Release

• Using autz.permit coroutine.

• Using autz.autz_required decorator for aiohttp handlers.

The async def autz.permit(request, permission, context=None) coroutine checks if permis-
sion is allowed for a given request with a given context. The authorization checking is provided by authorization
policy which is set by setup function. The nature of permission and context is also determined by a policy.

The def autz_required(permission, context=None) decorator for aiohttp’s request handlers checks
if current user has requested permission with a given context. If the user does not have the correct permission it raises
web.HTTPForbidden.

Note that context can be optional if authorization policy provides a way to specify global application context or if it
does not require any. Also context parameter can be used to override global context if it is provided by authorization
policy.

To use an authorization policy with autz middleware a class of policy should be created inherited from
autz.abc.AbstractAutzPolicy. The only thing that should be implemented is permit method (see Custom
authorization policy for autz middleware). The autz middleware has a built in ACL authorization policy (see ACL
authorization policy for autz middleware).

The recomended way to initialize this middleware is through aiohttp_auth.autz.setup or
aiohttp_auth.setup functions. As the autz middleware can be used only with authentication
aiohttp_auth.auth middleware it is preferred to use aiohttp_auth.setup.

ACL authorization policy for autz middleware

The autz plugin has a built in ACL authorization policy in autz.policy.acl module. This module introduces a
set of classes:

AbstractACLAutzPolicy: Abstract base class to create ACL authorization policy class. The sub-
class should define how to retrieve users groups.

AbstractACLContext: Abstract base class for ACL context containers. Context container defines a
representation of ACL data structure, a storage method and how to process ACL context and groups
to authorize user with permissions.

NaiveACLContext: ACL context container which is initialized with list of ACL tuples and stores
them as they are. The implementation of permit process is the same as used by acl_middleware.

ACLContext: The same as NaiveACLContext but makes some transformation of incoming ACL
tuples. This may helps with a perfomance of the permit process.

As the library does not know how to get groups for user and it is always up to application, it provides abstract autho-
rization ACL policy class. Subclass should implement acl_groups method to use it with autz_middleware.

Note that an ACL context can be specified globally while initializing policy or locally through autz.permit func-
tion’s parameter. A local context will always override a global one while checking permissions. If there is no local
context and global context is not set then a permit method will raise a RuntimeError.

A context is an instance of AbstractACLContext subclass or a sequence of ACL tuples which consist of a
Allow/Deny action, a group, and a sequence of permissions for that ACL group (see ACL Middleware Usage).

Note that custom implementation of AbstractACLContext can be used to change the context form and the way
it is processed.

Usage example:

from aiohttp import web
from aiohttp_auth import autz, Permission
from aiohttp_auth.autz import autz_required

10 Chapter 2. License

aiohttp_auth_autz Documentation, Release

from aiohttp_auth.autz.policy import acl

create an acl authorization policy class
class ACLAutzPolicy(acl.AbstractACLAutzPolicy):

"""The concrete ACL authorization policy."""

def __init__(self, users, context=None):
do not forget to call parent __init__
super().__init__(context)

we will retrieve groups using some kind of users dict
here you can use db or cache or any other needed data
self.users = users

async def acl_groups(self, user_identity):
"""Return acl groups for given user identity.

This method should return a set of groups for given user_identity.

Args:
user_identity: User identity returned by auth.get_auth.

Returns:
Set of acl groups for the user identity.

"""
implement application specific logic here
user = self.users.get(user_identity, None)
if user is None:

return None

return user['groups']

def init(loop):
app = web.Application(loop=loop)
...
here you need to initialize aiohttp_auth.auth middleware
auth_policy = ...
...
users = ...
Create application global context.
It can be overridden in autz.permit fucntion or in
autz_required decorator using local context explicitly.
context = [(Permission.Allow, 'view_group', {'view', }),

(Permission.Allow, 'edit_group', {'view', 'edit'})]
this raw context will be wrapped by ACLContext container internally
you can explicitly create acl context class you need and pass it here
autz_policy = ACLAutzPolicy(users, context)

install auth and autz middleware in aiohttp fashion
aiohttp_auth.setup(app, auth_policy, autz_policy)

authorization using autz decorator applying to app handler
@autz_required('view')
async def handler_view(request):

authorization using permit

2.2. Middleware plugins 11

aiohttp_auth_autz Documentation, Release

if await autz.permit(request, 'edit'):
pass

raw local context will wrapped with NaiveACLContext container internally
local_context = [(Permission.Deny, 'view_group', {'view', })]

authorization using autz decorator applying to app handler
using local_context to override global one.
@autz_required('view', local_context)
async def handler_view_local(request):

authorization using permit and local_context to
override global one
if await autz.permit(request, 'edit', local_context):

pass

Custom authorization policy for autz middleware

Tha autz middleware makes it possible to use custom athorization policy with the same autz public interface for
checking user permissions. The follow example shows how to create such simple custom policy:

from aiohttp import web
from aiohttp_auth import autz, auth
from aiohttp_auth.autz import autz_required
from aiohttp_auth.autz.abc import AbstractAutzPolicy

class CustomAutzPolicy(AbstractAutzPolicy):

def __init__(self, admin_user_identity):
self.admin_user_identity = admin_user_identity

async def permit(self, user_identity, permission, context=None):
All we need is to implement this method

if permission == 'admin':
only admin_user_identity is allowed for 'admin' permission
if user_identity == self.admin_user_identity:

return True

forbid anyone else
return False

allow any other permissions for all users
return True

def init(loop):
app = web.Application(loop=loop)
...
here you need to initialize aiohttp_auth.auth middleware
auth_policy = ...
...
create custom authorization policy
autz_policy = CustomAutzPolicy(admin_user_identity='Bob')

install auth and autz middleware in aiohttp fashion
aiohttp_auth.setup(app, auth_policy, autz_policy)

12 Chapter 2. License

aiohttp_auth_autz Documentation, Release

authorization using autz decorator applying to app handler
@autz_required('admin')
async def handler_admin(request):

only Bob can run this handler

authorization using permit
if await autz.permit(request, 'admin'):

only Bob can get here
pass

@autz_required('guest')
async def handler_guest(request):

everyone can run this handler

authorization using permit
if await autz.permit(request, 'guest'):

everyone can get here
pass

2.2.3 ACL Middleware Usage

The acl_middleware‘ plugin (provided by the aiohttp_auth library), is layered on top of the
auth_middleware plugin, and provides a access control list (ACL) system similar to that used by the Pyramid
WSGI module.

Each user in the system is assigned a series of groups. Each group in the system can then be assigned permissions that
they are allowed (or not allowed) to access. Groups and permissions are user defined, and need only be immutable
objects, so they can be strings, numbers, enumerations, or other immutable objects.

To specify what groups a user is a member of, a function is passed to the acl_middleware factory which taks a
user_id (as returned from the auth.get_auth function) as a parameter, and expects a sequence of permitted
ACL groups to be returned. This can be a empty tuple to represent no explicit permissions, or None to explicitly forbid
this particular user_id. Note that the user_id passed may be None if no authenticated user exists. Building apon
our example, a function may be defined as:

from aiohttp import web
from aiohttp_auth import acl, auth
import aiohttp_session

group_map = {'user': (,),
'super_user': ('edit_group',),}

async def acl_group_callback(user_id):
The user_id could be None if the user is not authenticated, but in
our example, we allow unauthenticated users access to some things, so
we return an empty tuple.
return group_map.get(user_id, tuple())

def init(loop):
...

app = web.Application(loop=loop)
setup session middleware
storage = aiohttp_session.EncryptedCookieStorage(urandom(32))

2.2. Middleware plugins 13

aiohttp_auth_autz Documentation, Release

aiohttp_session.setup(app, storage)

setup aiohttp_auth.auth middleware
policy = auth.SessionTktAuthentication(urandom(32), 60, include_ip=True)
auth.setup(app, policy)

setup aiohttp_auth.acl middleware
acl.setup(app, acl_group_callback)

...

Note that the ACL groups returned by the function will be modified by the acl_middleware to also include the
Group.Everyone group (if the value returned is not None), and also the Group.AuthenticatedUser if the
user_id is not None.

Instead of acl_group_callback as a coroutine the AbstractACLGroupsCallback class can be used (all
you need is to override acl_groups method):

from aiohttp import web
from aiohttp_auth import acl, auth
from aiohttp_auth.acl.abc import AbstractACLGroupsCallback
import aiohttp_session

class ACLGroupsCallback(AbstractACLGroupsCallback):
def __init__(self, cache):

Save here data you need to retrieve groups
for example cache or db connection
self.cache = cache

async def acl_groups(self, user_id):
override abstract method with needed logic
user = self.cache.get(user_id, None)
...
groups = user.groups() if user else tuple()
return groups

def init(loop):
...

app = web.Application(loop=loop)
setup session middleware
storage = aiohttp_session.EncryptedCookieStorage(urandom(32))
aiohttp_session.setup(app, storage)

setup aiohttp_auth.auth middleware
policy = auth.SessionTktAuthentication(urandom(32), 60, include_ip=True)
auth.setup(app, policy)

setup aiohttp_auth.acl middleware
cache = ...
acl_groups_callback = ACLGroupsCallback(cache)
acl.setup(app, acl_group_callback)

...

With the groups defined, an ACL context can be specified for looking up what permissions each group is allowed to
access. A context is a sequence of ACL tuples which consist of a Allow/Deny action, a group, and a sequence of

14 Chapter 2. License

aiohttp_auth_autz Documentation, Release

permissions for that ACL group. For example:

from aiohttp_auth.permissions import Group, Permission

context = [(Permission.Allow, Group.Everyone, ('view',)),
(Permission.Allow, Group.AuthenticatedUser, ('view', 'view_extra')),
(Permission.Allow, 'edit_group', ('view', 'view_extra', 'edit')),]

Views can then be defined using the acl_required decorator, allowing only specific users access to a particular
view. The acl_required decorator specifies a permission required to access the view, and a context to check
against:

@acl_required('view', context)
async def view_view(request):

return web.Response(body='OK'.encode('utf-8'))

@acl_required('view_extra', context)
async def view_extra_view(request):

return web.Response(body='OK'.encode('utf-8'))

@acl_required('edit', context)
async def edit_view(request):

return web.Response(body='OK'.encode('utf-8'))

In our example, non-logged in users will have access to the view_view, ‘user’ will have access to both the view_view
and view_extra_view, and ‘super_user’ will have access to all three views. If no ACL group of the user matches the
ACL permission requested by the view, the decorator raises web.HTTPForbidden.

ACL tuple sequences are checked in order, with the first tuple that matches the group the user is a member of, AND
includes the permission passed to the function, declared to be the matching ACL group. This means that if the ACL
context was modified to:

context = [(Permission.Allow, Group.Everyone, ('view',)),
(Permission.Deny, 'super_user', ('view_extra')),
(Permission.Allow, Group.AuthenticatedUser, ('view', 'view_extra')),
(Permission.Allow, 'edit_group', ('view', 'view_extra', 'edit')),]

In this example the ‘super_user’ would be denied access to the view_extra_view even though they are an
AuthenticatedUser and in the ‘edit_group’.

2.2. Middleware plugins 15

aiohttp_auth_autz Documentation, Release

2.3 API Documentation

2.3.1 Authentication Middleware API

Public Middleware API

Decorators

Abstract Authentication Policy

Abstract Ticket Authentication Policy

Concrete Ticket Authentication Policies

2.3.2 Authorization Middleware API

Setup auth and autz

Public Middleware API

Decorators

ACL Authorization Policy

2.3.3 ACL Middleware API

Public Middleware API

Decorators

AbstractACLGroupsCallback Class

2.4 Changelog

2.4.1 0.2.0 (2017-02-14)

• acl middleware:

– Add setup function for acl middleware to install it in aiohttp fashion.

– Fix bug in acl_required decorator.

– Fix a possible security issue with acl groups. The issue is follow: the default behavior is to add user_id
to groups for authenticated users by the acl middleware, but if user_id is equal to some of acl groups
that user suddenly has the permissions he is not allowed for. So to avoid this kind of issue user_id is
not added to groups any more.

– Introduce AbstractACLGroupsCallback class in acl middleware to make it possible easily create
callable object by inheriting from the abstract class and implementing acl_groups method. It can be
useful to store additional information (such database connection etc.) within such class. An instance of
this subclass can be used in place of acl_groups_callback parameter.

• auth middleware:

16 Chapter 2. License

aiohttp_auth_autz Documentation, Release

– Add setup function for auth middleware to install it in aiohttp fashion.

– auth.auth_required raised now a web.HTTPUnauthorized instead of a
web.HTTPForbidden.

• Introduce generic authorization middleware autz that performs authorization through the same interface
(autz.permit coroutine and autz_required decorator) but using different policies. Middleware has
the ACL authorization as the built in policy which works in the same way as acl middleware. Users are free to
add their own custom policies or to modify ACL one.

• Add global aiohttp_auth.setup function to install auth and autz middlewares at once in aiohttp fash-
ion.

• Add docs.

• Rewrite tests using pytest and pytest-aiohttp.

2.4. Changelog 17

aiohttp_auth_autz Documentation, Release

18 Chapter 2. License

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

	Install
	License
	Getting Started
	Middleware plugins
	API Documentation
	Changelog

	Indices and tables

